Intertwined chiral charge orders and topological stabilization of the light-induced state of a prototypical transition metal dichalcogenide

Yaroslav A. Gerasimenko, Petr Karpov, Igor Vaskivskyi, Serguei Brazovskii & Dragan Mihailovic in Nature physics journal of Quantum Materials 4, Article number: 32 (2019), DOI: https://doi.org/10.1038/s41535-019-0172-1

In a paper in the Nature physics journal of Quantum Materials, published on the 26 th of June, the structure of newly created quantum matter is revealed. The work follows the fundamental idea that the constituents of interacting many body systems in complex quantum materials may self-organize into new and unexpected artificial quantum states. However, in spite of the efforts of a large number of groups worldwide to determine the structure of such matter, and huge recent advances in experimental techniques, demonstrating new emergent order has proven surprisingly difficult. In the work by the group at the Jozef Stefan Institute, the authors use femtosecond-light pulse-induced using scanning tunneling microscopy, reporting for the first time a surprisingly intricate chiral long-range topologically non-trivial charge order emerging in a prototypical two-dimensional material.
The discovery of the principles that lead to metastability in charge-ordered systems opens the way
to designing novel emergent functionalities, particularly ultrafast all-electronic non-volatile cryo-
memories.

 

V članku, ki so ga 26. junija objavili v reviji Nature Physics Journal of Quantum Materials, avtorji razkrivajo detajlno strukturo povsem nove zvrsti kvantne snovi, ustvarjene daleč iz ravnovesja. Delo sledi ideji, da se lahko elektroni v kompleksnih kvantnih materialih samoorganizirajo v nove in nepričakovane umetne kvantne tvorbe pod neravnovesnimi pogoji. Žal pa kljub velikemu napredku eksperimentalnih tehnik in delu velikega števila vrhunskih skupin po svetu določitev strukture tovrstnih kvantnih snovi doslej ni bila uspešna. Skupini z Instituta “Jožef Stefan” je prvi na svetu uspelo s povsem novo metodo določiti presenetljivo zapleteno kiralno ureditev elektronov v tovrstni snovi. V članku skupina opisuje uporabo femtosekundnih svetlobnih sunkov za tvorbo nove vrste metastabilne kvantne ureditve v prototipnem dvodimenzionalnem dihalkogenidnem kristalu, v katerem so potem z uporabo tunelske mikroskopije z atomsko ločljivostjo raziskali podrobno razporeditev eletronov. Odkritje mehanizma, ki vodi k metastabilnosti v narejenih sistemih, odpira pot k novi uporabi, zlasti računalniškega spomina.